AP STATISTICS Dr. Paul L. Bailey

Activity 0905 Tuesday, September 5, 2023 Name:

Problem 1. A bin contains three red balls, five green balls, and k blue balls. Three balls are drawn at random from the bin. Find the smallest integer k so that the probability of picking three blue balls equals or exceeds the probability of picking one ball of each color.

Problem 1. A bin contains three red balls, five green balls, and k blue balls. Three balls are drawn at random from the bin. Find the smallest integer k so that the probability of picking three blue balls equals or exceeds the probability of picking one ball of each color.

Solution. The sample space has size

$$S| = \binom{8+k}{3} = \frac{(k+6)(k+7)(k+8)}{6}.$$

But we don't actually need this to solve this problem.

Let E_1 be the event of three blue balls, and E_2 be the event of one ball of each color. Then

$$|E_1| = \binom{k}{3} = \frac{(k-2)(k-1)k}{6}$$
 and $|E_2| = 15k$.

We wish to solve $|E_1| \ge |E_2|$, that is,

$$\frac{(k-2)(k-1)k}{6} \ge 15k.$$

This reduces to $k^2 - 3k + 2 \ge 90$, so $k^2 - 3k - 88 \ge 0$, that is, $(k+4)(k-11) \ge 0$. Thus, k = 11.