Activity 0905
Tuesday, September 5, 2023

Problem 1. A bin contains three red balls, five green balls, and k blue balls. Three balls are drawn at random from the bin. Find the smallest integer k so that the probability of picking three blue balls equals or exceeds the probability of picking one ball of each color.

Problem 1. A bin contains three red balls, five green balls, and k blue balls. Three balls are drawn at random from the bin. Find the smallest integer k so that the probability of picking three blue balls equals or exceeds the probability of picking one ball of each color.

Solution. The sample space has size

$$
|S|=\binom{8+k}{3}=\frac{(k+6)(k+7)(k+8)}{6} .
$$

But we don't actually need this to solve this problem.
Let E_{1} be the event of three blue balls, and E_{2} be the event of one ball of each color. Then

$$
\left|E_{1}\right|=\binom{k}{3}=\frac{(k-2)(k-1) k}{6} \quad \text { and } \quad\left|E_{2}\right|=15 k .
$$

We wish to solve $\left|E_{1}\right| \geq\left|E_{2}\right|$, that is,

$$
\frac{(k-2)(k-1) k}{6} \geq 15 k
$$

This reduces to $k^{2}-3 k+2 \geq 90$, so $k^{2}-3 k-88 \geq 0$, that is, $(k+4)(k-11) \geq 0$. Thus, $k=11$.

